Môn Toán

Tâm đường tròn ngoại tiếp tam giác là giao điểm của 3 đường gì

Cùng CNTA tham khảo bài viết “Tâm đường tròn ngoại tiếp tam giác là giao điểm của 3 đường gì” bên dưới nhé!

Mời quý thầy cô, các em học sinh lớp 9 tham khảo tài liệu Tâm đường tròn ngoại tiếp tam giác là gì nhé !

Tài liệu tổng hợp toàn bộ kiến thức lý thuyết và các dạng bài tập, phương trình đường tròn, bán kính đường tròn ngoại tiếp tam giác. Qua tài liệu này các em có thêm nhiều tư liệu tham khảo, trau dồi kiến thức để học tốt Toán 9. Vậy sau đây là nội dung chi tiết mời các bạn cùng theo dõi với CNTA nhé !

Video tâm của đường tròn ngoại tiếp tam giác

Lý thuyết tâm đường tròn ngoại tiếp tam giác

1. Khái niệm đường tròn ngoại tiếp tam giác

Đường tròn ngoại tiếp của tam giác là đường tròn đi qua các đi qua tất cả các đỉnh của tam giác đó. Tâm của đường tròn ngoại tiếp là giao điểm của ba đường trung trực của tam giác đó.

2. Cách xác định tâm đường tròn ngoại tiếp tam giác

– Có 2 cách để xác định tâm đường tròn ngoại tiếp tam giác như sau:

– Cách 1

Tâm đường tròn ngoại tiếp tam giác - Tóm tắt kiến thức

+ Bước 1: Gọi I(x;y) là tâm của đường tròn ngoại tiếp tam giác ABC. Ta có IA=IB=IC=R

Tâm đường tròn ngoại tiếp tam giác - Tóm tắt kiến thức (ảnh 2)

+ Bước 2: Tọa độ tâm I là nghiệm của hệ phương trình

– Cách 2:

+ Bước 1: Viết phương trình đường trung trực của hai cạnh bất kỳ trong tam giác.

+ Bước 2: Tìm giao điểm của hai đường trung trực này, đó chính là tâm của đường tròn ngoại tiếp tam giác.

– Như vậy Tâm của đường tròn ngoại tiếp tam giác ABC cân tại A nằm trên đường cao AH

Tâm của đường tròn ngoại tiếp tam giác vuông là trung điểm cạnh huyền

3. Phương trình đường tròn ngoại tiếp tam giác

Viết phương trình đường tròn ngoại tiếp tam giác ABC khi biết tọa độ 3 đỉnh.

Tâm đường tròn ngoại tiếp tam giác - Tóm tắt kiến thức (ảnh 3)

Để giải được bài toán viết phương trình đường tròn ngoại tiếp tam giác ta thực hiện theo 4 bước sau:

+ Bước 1: Thay tọa độ mỗi đỉnh vào phương trình với ẩn a,b,c (Bởi các đỉnh thuộc đường tròn ngoại tiếp, nên tọa độ các đỉnh thỏa mãn phương trình đường tròn ngoại tiếp cần tìm)

+ Bước 2: Giải hệ phương trình tìm a,b,c

+ Bước 3: Thay giá trị a,b,c tìm được vào phương trình tổng quát ban đầu => phương trình đường tròn ngoại tiếp tam giác cần tìm.

+ Bước 4: Do A,B,C ∈ C nên ta có hệ phương trình:

=> Giải hệ phương trình trên ta tìm được a, b, c.

Thay a, b, c vừa tìm được vào phương trình (C) ta có phương trình đường tròn ngoại tiếp tam giác cần tìm.

4. Bán kính đường tròn ngoại tiếp tam giác

Cho tam giác ABC

Tâm đường tròn ngoại tiếp tam giác - Tóm tắt kiến thức (ảnh 4)

Gọi a, b, c lần lượt là độ dài các cạnh BC, AC, AB. S là diện tích tam giác ABC

Ta có bán kính đường tròn nội tiếp tam giác ABC là:

Tâm đường tròn ngoại tiếp tam giác - Tóm tắt kiến thức (ảnh 5)

Bài tập về đường tròn ngoại tiếp tam giác

Dạng 1: Viết phương trình đường tròn nội tiếp tam giác ABC khi biết tọa độ 3 đỉnh

VD: Viết phương trình đường tròn ngoại tiếp tam giác A, B, C biết A(-1;2) B(6;1) C(-2;5)

Cách giải:

Gọi phương trình đường tròn ngoại tiếp tam giác ABC có dạng:

Tâm đường tròn ngoại tiếp tam giác - Tóm tắt kiến thức (ảnh 6)
Do A, B, C cùng thuộc đường tròn nên thay tọa độ A, B, C lần lượt vào phương trình đường tròn (C) ta được hệ phương trình:

Tâm đường tròn ngoại tiếp tam giác - Tóm tắt kiến thức (ảnh 7)
Do đó, Phương trình đường tròn ngoại tiếp tam giác ABC tâm I (3;5) bán kính R = 5 là:

Tâm đường tròn ngoại tiếp tam giác - Tóm tắt kiến thức (ảnh 8)
Dạng 2: Tìm tâm của đường tròn ngoại tiếp khi biết tọa độ ba đỉnh

Ví dụ: Cho tam giác ABC với A(1;2), B(-1;0), C(3;2). Tìm tọa độ tâm của đường tròn ngoại tiếp tam giác ABC

Hướng dẫn cách giải

Gọi I(x;y) là tâm của đường tròn ngoại tiếp tam giác ABC
Tâm đường tròn ngoại tiếp tam giác - Tóm tắt kiến thức (ảnh 9)
Vì I là tâm của đường tròn ngoại tiếp tam giác ABC nên ta có:

Tâm đường tròn ngoại tiếp tam giác - Tóm tắt kiến thức (ảnh 10)
Vậy tọa độ tâm của đường tròn ngoại tiếp tam giác ABC là I(2;-1)

Dạng 3: Tìm bán kính đường tròn nội tiếp tam giác

VD: Tam giác ABC có cạnh AB = 3, AC = 7, BC = 8. Tính bán kính đường tròn ngoại tiếp tam giác ABC

Cách giải:

Tâm đường tròn ngoại tiếp tam giác - Tóm tắt kiến thức (ảnh 11)

6. Các dạng bài tập khác

Bài 1: Cho tam giác ABC cân tại A. Các đường cao AD, BE và CF cắt nhau tại H. Chứng minh tứ giác AEHF là tứ giác nội tiếp. Xác định tâm I của đường tròn ngoại tiếp tứ giác đó.

Lời giải:

Tâm đường tròn ngoại tiếp tam giác - Tóm tắt kiến thức (ảnh 12)
+ Gọi I là trung điểm của AH

+ Có HF vuông góc với AF (giả thiết) suy ra tam giác AFH vuông tại F

I là trung điểm của cạnh huyền AH

Suy ra IA = IF = IH (1)

+ Có HE vuông góc với AE (giả thiết) suy ra tam giác AEH vuông tại E

I là trung điểm của cạnh huyền AH

Suy ra IA = IE = IH (2)

+ Từ (1) và (2) suy ra IA = IF = IH = IE

Hay I cách đều bốn đỉnh A, E, H, F

Suy ra tứ giác AEHF nội tiếp đường tròn có tâm I là trung điểm của AH

Bài 2: Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O). Các đường cao AD, BE, CF cắt nhau tại H và cắt đường tròn (O) lần lượt tại M, N, P

a, Chứng minh tứ giác CEHD là tứ giác nội tiếp

b, Chứng minh 4 điểm B, C, E, F cùng nằm trên một đường tròn

c, Xác định tâm đường tròn nội tiếp tam giác DEF

Lời giải:

Tâm đường tròn ngoại tiếp tam giác là giao điểm của 3 đường gì
Suy ra tứ giác FECB nội tiếp đường tròn tâm K là trung điểm của BC

Tâm đường tròn ngoại tiếp tam giác - Tóm tắt kiến thức (ảnh 14)
+ Chứng minh tương tự ta cũng có FC là tia phân giác của góc DFE

Mà BE và CF cắt nhau tại H nên H là tâm đường tròn nội tiếp tam giác DEF

Xem thêm : Bảng nguyên tố hóa học lớp 8

#Tâm #đường #tròn #ngoại #tiếp #tam #giác #là #giao #điểm #của #đường #gì

Cẩm Nang Tiếng Anh

Cẩm Nang Tiếng Anh - Blog chia sẻ tất cả những kiến thức hay về ngôn ngữ tiếng Anh, nghe nói tiếng Anh, từ vựng tiếng Anh tất cả các chuyên ngành. Kinh nghiệm tự học tiếng Anh tại nhà nhanh nhất, tiết kiệm thời gian, chi phí…
Back to top button